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Abstraet--A model for transition between stratified and annular two-phase flows in horizontal tubes has 
been developed, based upon a momentum balance and energy transfer between the two phases. Without 
specifying the mechanisms involved in the transition, a criterion has been put forth which requires that the 
mechanical energy change experienced by the gas be greater than the work done by the interfacial forces in 
bringing about the transition. In this sense, the proposed criterion is "global" and concerns itself only with 
the states of the two-phase flow before and after the transition. The criterion predicts a region of stability 
for annular flow which is in reasonable agreement with the Baker plot as well as other transition maps. It 
has been demonstrated that the transition depends upon the void-fractions in stratified and annular flows 
and thus helps to explain the wide discrepancies in the observed data from several sources. 

INTRODUCTION 

In horizontal tube two-phase flows, there exist several flow patterns. Alves classified the 
observed patterns into the following categories: stratified, wavy, slug, plug, bubbly, froth flow 
and annular or annular mist flow which finally degenerates into dispersed flow. In the design of 
pipes which carry liquid-gas mixtures (as in the petroleum industry) and in heat exchangers 
where phase changes occur, it is necessary to know the pressure drop and the heat transfer, 
both of which are strongly dependent on the flow pattern. Hoogendoorn (1959) for example, has 
demonstrated that for essentially similar flow conditions, slug or wave flow may be attained in 
air-water mixtures, resulting in changes in pressure drop by a factor of 2. The calculations of 
Bell et al. (1970) show that the use of stratified flow correlations could result in condensation 
heat transfer estimates that are several orders of magnitude different from those by using 
annular flow correlations. Thus, in order to obtain an accurate estimate of the pressure drop 
and heat transfer in a pipe, it is necessary to know the actual flow pattern at any point in the 
pipe. 

Several attempts have been made to predict the flow pattern for specified liquid and gas 
mass flow rates or superficial velocities. Kosterin (1949), Aires (1954), Baker (1954), Krasi- 
akova (1954) and Hoogendoorn (1959) were among the first few to propose maps which could 
be utilized for the prediction of flow patterns in adiabatic flow. These maps show various 
regions into which the flow patterns fall, when two selected correlation parameters are plotted 
against each other. Several other investigators have also proposed empirical maps which are 
usually modifications of earlier maps based on more extensive data, e.g. Govier & Omer (1962), 
Scott (1963), Govier & Aziz (1972) and Mandhane et aL (1974). In most of these maps (see for 
example, figures 1 or 2), lines of demarcation among the various flow regimes are shown. In 
practice, however, there are no sharp distinguishing boundaries and the type of flow changes 
gradually from one to another as the parameters change. 

Empirical maps to predict transitions among the flow patterns in condensation are also 
available. Traviss & Rohsenow (1971) observed the flow regimes in horizontal two-phase flow 
with condensation. Soliman & Azer (1974) formulated a flow pattern map based upon obser- 
vations in tubes ranging from 0.476 to 1.59 cm. 

Among the flow patterns that can exist, annular/annular-mist and stratified flow are the most 
important and cover a quality range between them from 1 to 90% or more. In flows with phase 

311 
MF Vol. 8, No. 4--A 



312 v. KADAMBI 

UL, f t / s  

10 

I0-~ 

5X 10 -2 

1 10 
I i 

m/s 

Bubble 

Slug 

I 

10 

u G, ft/s 

Figure 1. Aires flow map. 
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Figure 2. Hoogendoorn map. 
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changes, as much as 95-98% of the heat transfer can occur in these regimes. So, a considerable 
amount of attention has been focused on the annular stratified transition. Jaster & Kosky (1976) 
have defined an empirical force balance parameter which represents the ratio of gravitational 
and shear forces. This factor is expec.ted to define the existence of annular or stratified flow 
depending upon its magnitude. Wallis (1962) has also defined a force balance parameter for 
vertical flows. According to Palen et al. (1979), the same parameter can be used to determine 
annular-stratified transitions in horizontal tubes as well. 

In spite of all the effort expended so far, there has been no general agreement among the 
investigators about even the independent variables to be used in the flow pattern maps. Alves 
(1954) used the superficial liquid and gas velocities, whereas Baker (1954) used the mass flux 
ratio for the abscissa and the gas mass flux for the ordinate. While Govier & Omer (1962) used 
the liquid and gas mass fluxes as the coordinates, Govier & Aziz (1972), Mandhane et ai. (1974), 
and Dulder (1978) recommend the use of superficial liquid and gas velocities. Several correction 
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factors to take account of changes in tube diameters and liquid as well as gas properties 
have been proposed, based mostly on observations. So far, none of the flow maps has 
dimensionless coordinates. Another major difficulty is that data from several sources do not 
necessarily agree with one another. There are strong indications that changing diameters, 
centrifugal forces, the existence of bends, heat transfer, etc. alter the flow patterns significantly 
(see for example, Weisman et al. 1979,t Hughes 1953 and Isbin et al. 1959). Further, as stated 
earlier, a mere variation in inlet conditions has produced slug as well as wave patterns at the 
same liquid and gas mass flow rates. It was for these reasons that Scott (1963) proposed a 
modified Baker plot showing areas of flow transition in place of lines. Even with this map, Scott 
recommends that further allowances be made for tube diameters 2.5 cm and lower, since the 
indicated areas tend to change rapidly with decreasing tube sizes. Mandhane (1974) has made 
allowances for property changes by defining a parameter, F, which is itself a function of the 
liquid-gas properties such as densities, viscosities and surface tension. 

Taitel & Dukler (1975) have proposed a mechanistic model for flow transitions among 
several flow patterns. They use the Kelvin-Helmholtz condition for the stability of a wavelet to 
determine the criteria for transition from stratified to slug flows. They assert further that 
annular flow results if the stratified liquid level before transition is below the pipe center line, 
while slug flow results otherwise. The results obtained therefrom and the use of empirical 
factors are in agreement with the Mandhane (1974) flow map, though not with the Baker (1954) 
and Scott (1963) maps everywhere. Taitel & Dukler (1977) have extended the model to unsteady 
flow with changing gas flow rates, to predict slug frequency. Niu & Dukler (1978) have also 
presented an intermittent heat transfer calculation based on these ideas. 

The mechanism that maintains a full annular film in a horizontal tube has been the subject of 
conjecture as well as investigation by several authors. Jacowitz (1962) agues that the only stable 
situation is one that is dynamic, where a balance exists among the several forces (lift, surface 
drag, pressure, wall drag, wave formation effect, etc.), with a small but continuous downward 
drainage of liquid in the film. The film is expected to become thinner and thinner as the 
two-phase flow proceeds along the tube. Butterworth (1971) and Butterworth & Pulling (1972) 
have shown that waves play an important role in maintaining the film at the top of the tube. 
Butterworth concludes that the liquid annulus can be maintained due to a continuous 
replenishment of the film at the top by one of two possible mechanisms. The first involves a 
secondary circulation in the film against gravity caused by differences in liquid film thickness 
between the bottom and the top (Darling & McManus 1968). The second is the action of waves 
which spread the liquid from the high flow to the low flow regions (Butterworth, 1969a and 
1969b). A third mechanism which is favored by some authors (e.g. Fisher & Pearce 1978) is that 
the liquid drains continuously under gravity and is replenished purely by entrainment and 
redeposition of the liquid droplets due to the high velocity gas flow. Several observations 
(Krasiakova 1952, Wicks & Dukler 1960) indicate either negligible entrainment or decreasing 
entrainment with increased liquid flux. It is difficult to see how entrainment can be the sole 
mechanism to maintain the film when annular flows have been reported with only 5% 
entrainment or less. What is possible is that several of these mechanisms aid one another in 
maintaining a stable film, with entrainment being an unimportant contributor at the start of 
annular flow. 

Since the exact mechanisms that cause a change from stratified to annular flow are very 
complicated, little understood and hard to analyze, an attempt has been made here to predict 
the transition requirements based upon "global" considerations. It is postulated that annular 
flow arises when the energy exchange between the phases is sufficient to raise the liquid energy 
to that in annular flow. The force of interaction between phases is pictured as the agency 
responsible for the energy exchange between the phases. The transition criterion is based on 

tThe author is grateful to the reviewer who brought this reference to his notice. 
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the requirement that the gas should undergo a total energy change that is greater than the 
work done by the interactive forces between the gas and the liquid. Thus, the proposed criter- 
ion is completely different from that of Taitel & Dukler (1975), which postulates the instability of 
a wavelet at the interface in stratified flow as responsible for the transition. The present postul- 
ate leads to a transition condition depends upon the specified annular and stratified void- 
fractions and slip, as well as on the nondimensionai groups, the Froude number, Weber number and 
Reynolds number. Calculations demonstrate that annular flow can occur only if the liquid Froude 
number is close to unity. This implies that for stability, the liquid kinetic energy in annular flow 
be greater than its potential energy at the center of the tube. A comparison with the Scott version 
of the Baker plot shows very good agreement for air-water flows in 10 cm (4 in.) dia. tubes. For 5 cm 
(2 in.) and 2.5 cm (1 in.) dia. tubes, the criterion specifies larger stable annular regions of flow 
than specified by the map. Moreover, the stable region is shown to depend upon the inlet and 
exit void-fractions utilized as the input and thus helps to explain the discrepancies among the 
results of various investigators as well as the necessity for establishing a fully stable flow 
before making measurements. 

ANALYSIS 

The attempt here is to model transition between the annular and stratified flows. This 
transition is the most important in the study of two-phase heat exchangers since almost 95% of 
the total energy exchange occurs in annular and stratified flow regimes. Hence, consideration 
will be limited to this transition, though it is expected that the analysis will predict the transition 
boundary between annular and the rest of the patterns in its neighborhood, with sufficient 
accuracy. 

Let a two-phase liquid gas mixture enter a horizontal pipe in annular flow, with a specified 
void-fraction. If the flow induced is unstable, it will change to stratified conditions as shown in 
figure 3, over a transition zone. Similarly, if it is started in stratified flow, it will change into 
annular flow, provided annular flow is stable under the impressed conditions. Thus the direction 
of flow indicated in the figure is not of much consequence in the analysis. We simply consider 
the flow on one side of the transition zone (indicated by subscript 1) as annular and on the other 
side (indicated by subscript 2) as stratified. 

Let uL and ua be the respective average liquid and gas velocities, flowing through a tube of 
radius R. The intention is to make mass and momentum balances over the transition region, 
assuming steady, incompressible flows coming into and going out of the control volume. In 
addition, heat transfer is neglected so that the present analysis applies only to adiabatic 
conditions. Entrainment and redeposition of droplets which usually occurs in annular flow, is 
neglected in this first analysis. If sufficient information on droplets is available, they can be 
included and modified results obtained. 

In annular flow, the gas core has always been observed to be eccentric with respect to the 
pipe, resulting in a thicker liquid film at the bottom of the tube than at the top. It is assumed 
that the gas core is also circular with radius R, and its center displaced from that of the pipe as 
shown in figure 4. For given values of the eccentricity, h, and radii R, Ri, it is readily 
demonstrated from geometry that the liquid layer thickness, & is related to the angle 0 at the 
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Figure 3. Annular-stratified transition. 



STABILITY OF ANNULAR FLOW IN HORIZONTAL TUBES 315 

--~----_%~Tube Wall 

Gas Pressure, p, ~ ~"~..~C 

Figure 4. Annular film. 

center of the pipe by the equation: 

8 = (R - h cos 0) - (R/2 - h 2 s in  s 0)  v2. [1] 

We now try to estimate the variation of pressure in the annular film, since this is needed 
later as an input to the momentum equation. Assuming the pressure exerted by the gas on the 
interface, p, to be constant all over the boundary, the liquid pressure will clearly vary from the 
top to the bottom due to surface tension, waviness, shear (drag), gravity and several other 
effects (Jacowitz 1962). However, the velocities of recirculation and drainage in the film are 
rather small compared with the axial velocities of flow, as evidenced by Jacowitz's experiment 
as well as calculations. We assume that the drag and shear effects are small in the radial 
direction so that the radial change in pressure may be treated as if it is caused by purely 
hydrostatic effects. Then, if the effect of film waviness is neglected (commensurate with the 
picture of a smooth average film), a force balance yields: 

0p 
o r  = - pL g cos 0, [2a] 

where p, is the pressure at any point in the film located at a radius r, and angle 0 from the 
vertical. The liquid density is PL. An integration subject to the condition 

r= R - 8 :  p = p i = p l - o , / R i  [2b] 

yields: 

P - Pi = - PL g cos O{r- [h cos 0 + (R~ - h 2 sin s 0)1/2]}. [2c] 

Since the pressure at every point in the film is known, it permits us to calculate the total 
axial force on the film due to pressure at section h 

FL,=2 prdOdr= 2 {pi-pLgCOs O[r - (hcos  O+(R~-h2sin2 0)ve]} rdOdr 
- 8  - 8  

= (P; + PL gh/2)cr(R 2 - R~). [3] 

The details of the integration have been omitted in the interest of brevity. 
In order to determine the axial force on the stratified liquid at section 2, consider figure 5. 

Assuming a uniform gas pressure, P2, acting on the liquid surface, the pressure, PL, on a little 
element ABCD becomes: 

PL = P2 + PL g(r cos 0 - R cos ,8). [4] 
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The total axial force on the liquid due to pressure is: 

FL2 = 2 [P2 + Ocg(r cos 0 - R cos/3)lrdOdr 
0 4Rcos~ lcosO 

= (P2R 2 - pt. gR 3 cos/3)(/3 - sin 23/2) + 2pL gR 3 sin 3 riD. [5] 

Note that in annular flow the void-fraction is related to Ri by the relation: 

cq = Ri2/R 2 , I6a] 

while in stratified flow, the void fraction is related to the angle,/3, by the relation 

a2 = 1 - (/3 - sin 2/3/2)/¢r. [6b] 

By using [4], [5], [6a, b] and noting that the axial forces due to pressure on the gas sections 1 
and 2 are, respectively: 

Fal = IrRi2pl and Fa2 = 7rR2a2 P2,  [7] 

we can write the momentum equation in the axial direction in the following form: 

Fo~ + FL~ + (Morn), = F~2 + FL2 + (Momh + F~ 

i.e. 

= lrR2[p2a2+(p2 oLgR cos fl)(l - a2)+2pLgR  sin 3 fl/(3¢r)+ 2 2 --  OG u G2 Or2 + PL  11 L2 ( | --  0/2)] + Fs. 

[81 

Here, Fs, is the shear force due to wall effects and other dissipative forces in the transition 
region and pa is the gas density. Experimental observations in the previously cited literature as 

well as those conducted by the present author in a 1.9 cm tube indicate that the transition region 
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is itself short, compared with the tube length. It is likely that frictional forces which are usually 
proportional to tube length, are small in this regime and may be neglected as compared with the 
rest of the quantities in the above equation. 

We write the continuity equations as follows: 

UC;lal = Uo2Ot2 ( g a s  v o l u m e  flow) [9a]  

ULI(I - a l )  = UL2(1 -- a2)  (liquid volume flow). [9b] 

Equations [9a] and [9b] are based on the assumption that the gas temperature does not change 
appreciably during transition and that the densities of both phases may be considered as 
constant in view of the small pressure change, p~-  p~. 

With these relations and assumptions [8] can be simplified to obtain an expression for the 
pressure change during transition: 

~ ' (~2 - -Ol l ) (~Z-~ - -RdS1201 l~  1 [ s i n ~ 8 ( l - ~ ) - / 3  x ~ - a2 a 2 /  + ~--P-~ cos/3 
~rh(l - a~)] 

~ J 
( 1  - al) [9] 

In this equation, the quantity ApR represents the pressure difference, p~-p~, assuming 
frictional effects during transition to be negligible while Rd -- Po/PL. The quantities, Fr and We, 
are, respectively, the Froude Number and the Weber number, defined as follows: 

Fr = ULI/(gR)I/2"~ W e  = pLH21R/o ' .  [lO1 

The Froude and Weber numbers based on liquid superficial velocities and tube diameter are 
related to the above quantities by the respective equations: 

Fr* = ( 1  - al) Fr/V(2) = UL/(gD) 1/2 

We* = 2(I - 0~1) 2 W e  = pLI42L$ D/o'. 

[lla] 

[llb] 

In these equations, UL~, is the liquid superficial velocity and D, the tube diameter. For a given 
liquid-gas combination (air-water for example), the Weber number is specified once the tube 
radius and Froude number are fixed. 

For specified values of as, the annular void-fraction, and a2, the stratified void-fraction, 
Froude and Weber numbers, the velocity ratio S~ = Um/UL~, and annulus eccentricity, h, it is 
now possible to compute the pressure change, ApR, that will occur in the event of transition. 
Since the interest here is in specifying the line of stability of annular flow, computations have 
been carried out assuming that the eccentricity is the maximum permissible for the given value 
of al, i.e. one where the liquid-gas interface is just tangential to the tube inner surface. Then: 

h = R - Ri = R(1 - %/al) • [12] 

Experimentally, it should be possible to produce almost any specified void-fraction and 
slip-ratio, at either the inlet to the annular or the stratified section. Indeed, Hasson & Nir (1970), 
through a suitable combination of a nozzle and fluid flow arrangement produced various inlet 
annular conditions to study the stability of such flows. Hence, one can choose any arbitrary 
values of al and a2 (0_< a!t < 1, 0-< a2-< 1), slip, etc. and require [9] to provide the pressure 
difference for that particular case. For calculational purposes, what has been done is to pick the 
void-fractions and slip for annular flow by the use of the Pai (1953) velocity profiles and the 
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Wallis (1970) interfacial friction factors, as shown briefly in Appendix A. Similarly, for stratified 
flow, the curve-fits provided by Kadambi (1981) and exhibited below have been utilized: 

(a) Turbulent-turbulent flow: 

1 + 1.4133X, 
a2 = 1 + 2.5315 X ,  + O.4403 X~t (ReL<2000;  ReG>2000)  [13a] 

(b) Laminar-turbulent flow: 

1 + 1.9566XLt 
a2 = 1 + 3.0927XL, + 0.6946X~t (Re~ -> 2000; 1200 _< Re£ < 2000). [13b] 

For superficial liquid Reynolds numbers lower than 1200 in the laminar-turbulent range, the 
following equations are used: 

1 - o~2 = (1 - a~)[1 +0.161 x 10 -3 (ReL - 1200)] 

1 - a2 = (1 - a~)[1 + 0.246 × 10 -3 (ReL - 1200)] 

1 - a2 = (1 - a~)[1 +0.31 × 10 -3 (ReL - 1200)] 

(500 _ Re£ -< 1200) [13c] 

(120 < ReL < 500) [13d] 

(25 -< Re£ -< 120) [13el 

In the above equations, a~, is the void-fraction calculated from [13b]. 

(c) Laminar-laminar flow: 

1 + 0.6684X££ 
a2 = 1 + 1.2424XLL + 0.201X2L [13f] 

In [13a]-[13f], the quantities X,, XLt and XLL are the Lockhart-Martineili  parameters defined 
by the following equations: 

X ,  = [(1 - x)/x] °~9 R°d5/M °l [14al 

XLt -- 18.6501 (ReD °'l (Rd ReL)°5(1 - x)/x [14b] 

and 

XLL = [(1 -- X)/X] 1/2 (Rd M) 1/2. [14c] 

THE TRANSITION CRITERION 

Having determined the pressure change during the expected transition, it is necessary to 
propose a criterion which will specify which of the two states, annular or stratified, will exist. A 
survey of the literature reveals that one of two propositions is usually used in similar situations. 
These are: (i) the minimum entropy production principle, and (ii) the principle of minimum 

energy. 
For the present situation, the use of the minimum entropy production principle would lead 

to the assertion that the stable configuration is that which has the lower dissipation and, 
therefore, the lower pressure drop (between annular and stratified flows) for the same liquid and 
gas mass fluxes. The minimum energy principle, on the other hand, leads to the assertion that 
the stable state is that which has less mechanical energy between the two possible ones. 
Moreover,  both the criteria ignore the transition region where the liquid-gas interaction leading 
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to the change in flow regimes occurs. It is, therefore, concluded that they are not applicable to 

the present situation. 
Wallis & Dobson (1973) have correlated the transition from stratified to slug flow for 

rectangular ducts in terms of the dimensionless gas superficial velocity, /~, and the void- 
fraction a, by the relation: 

j¢~ ---- 0 . 5 a  3/2 • [15] 

The 3/2 power of a in the above equation has been obtained from the use of the Kelvin- 
Helmholtz classical theory of instability (Milne-Thompson, 1968), while the coefficient, 0.5, is 
empirical. The Taitel-Dukler (1975) analysis also uses a result obtained from the Kelvin- 
Helmholtz principle, except for a coefficient chosen in a form which meets the limiting 
conditions as a tends to zero or unity in stratified flow. Taitel and Dukler make the further 
assertion that annular flow occurs due to the instability if the equilibrium liquid level in 
stratified flow is lower than the pipe centerline. The basis for such an assertion, however, is not 
clear. 

None of these criteria can be utilized here directly. As such, we shall examine the transition 
region and the interaction as well as the energy transfers between the liquid and the gas more 
closely. Since a combined momentum equation for the liquid and gas has already been written, 
we write an equation for the gas alone, to determine the force of interaction between the gas 
and the liquid during the transition. By considering a differential volume element of the gas, a 
force balance yields: 

rhG du~ = - Aadp  + dFi. [161 

Here, dF~ is the force of interaction between the gas and the liquid element which may 
ultimately cause the transition. Once again shear and dissipative forces have been neglected as 
done for the overall momentum balance. 

Since the void-fraction, a, varies during the transition, it will not be possible to integrate this 
equation exactly. An approximate result can, however, be obtained by assuming that the effect 
on F~ of the variation in a is not large for flows close to transition and replace a by its mean 
value at its end states, i.e. by am = 0.5 (at + a2 ) .  Then, [16] can be integrated directly and leads 
to the result: 

F~ ~- - A [ a m A p ~  + p 6 u a l a t ( u a ~  - uG2)] 

[17] 

Here, ApR is the pressure change in a transition obtained by neglecting all dissipative effects. 
The force, F~, is responsible for energy transfer between the liquid and the gas. If flow 

should become annular starting from a stratified condition, it is necessary that the gas should 
provide the difference in liquid energies between the two regimes through the medium of this 
interactive force which acts at the interface. The rate of work done by the gas on the liquid is, 
therefore: 

. rt~UiULl[rt m A ~  RdSi2(a..~2--al)] 
w = = - m L  + J [18] 

where u~, is the average interracial velocity in the transition regime. 
Since the gas does work on the liquid during the transition it suffers an energy loss between 
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stratified and annular flows by an amount equal to: 

aEc, = thc[(pdp~ + U2c,2/2)- (P~/O~ + uZd2)] 

= -  p~ualAa~ L PG 2 

[ ap .  + RdS, 2 ] mL IdLlldGl[pLU21. ! 2 \ or22 ,]J" [19] 

It is now postulated that the proposed flow transition occurs provided the gas energy 
difference between the two regimes, AEG, is at least as large as the energy transfer at the 
interface, i.e. stable annular flow can occur only if: 

aEo >- - Fiui. [20] 

On substituting for AEG and Fiu~ from [19] and [18] and simplifying, we obtain: 

r ,',p,, g s, (0/?- o,?) 1 [o,,,, a,,, <")1 
-UalL~--LuU+ ~ a22 j>_UiL-d~l&-~uL1 + / 

or2 J 

or: 

ApR ( l +  am Ui ] <  R a S l 2 ( a 2 - a O ( a m +  ui ) 
PLU2LI \ Ol I u ~ , ! -  a--~ \a2 ~ " [211 

The quantity, ui, the average interfacial velocity during the transition, is not easily deter- 
mined. It is probably safe to assume that ui is of the same order of magnitude as the interfacial 
velocities in annular and stratified flows. It is known through observations (Armand 1946; 
Bergelin & Gazley 1949; Agrawal et aL 1973) and theoretical calculations (Kadambi 1980a, 
1980b) that the interfacial velocities in both annular and stratified flows are quite small being 
often less than 4-5% of uGi. If we, therefore, neglect terms containing u.)uGj compared with 
unity, the transition criterion reduces to the form: 

ApR RdS12(Otl 2 - or2 2) 
pLU21 <~ 2a22 [22] 

It is thus asserted that transition to annular flow occurs and a stable flow results if the 
inequaltiy in [21] (or the approximate form in [22]) is satisfied. If not, stratified flow will be 
stable, since the gas does not have enough energy to bring about the transition to annular flow. 

Since energy exchange between the gas and the liquid is the postulated mechanism for the 
transition, it is clear that the gas energy in annular flow is less than that in stratified flow under 
the same mass flow rates and other conditions, i.e. AEa must be positive. From [19] it follows 
that: 

RdS12(al 2 -- or2 2) APR > rl 
2a22 pLU----~L 1 -- v .  

This requirement is automatically satisfied if the transition criterion in [22] is met. Also, 

ftlL0/lllilALl(1 __ al)  [-~-1 pL--"~UL1 + f O r m  ApR RdSi2(ot2012 - o[i) ] F, ui 

I~L 0/l UiULI r 0/d RdSl2( O¢l - 0/2)_{ - RaSi2( a__2 - a0 ]  
<-  1 -  ~1 t ~ ~ 2  2 ' "  ~2 J 

filL0/lUiUL1 (0 / I -  at2) 3 RdSI2 [23] 
--< ~ Z ~ l  1 40/10/22 
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Since Fsui is the energy supplied to the interface by the gas, this quantity should be positive 
as well. The product uiuL! is positive and a -< 1. Therefore, all the terms on the r.h.s, of [23] will 
be positive if: 

O~ I ~" O~ 2 • [24]  

Hence, a necessary condition for transition is that the annular void-fraction be greater than 

the stratified void-fraction. This condition ensures that the annular gas velocity is lower than 
that in stratified flow. The same conclusion may be reached by looking at the gas-liquid energy 
transfers as well. Since the liquid is lifted up in going from the stratified to the annular state, it 
is reasonable to suppose that the total liquid energy in the annular state is higher than that in the 
stratified state. The total mechanical energy of the flow can at best remain constant during the 
transition, so that an increment in liquid energy can occur only at the expense of the gas kinetic 
energy due to the interaction postulated earlier. Hence, the gas velocity in annular flow must be 
lower than that in stratified flow. 

R E S U L T S  A N D  D I S C U S S I O N  

By using equilibrium values of void-fractions in annular and stratified flows, the pressure 
change required for transition is obtained from [9]. Subsequently, the transition criterion 
specified by the inequality in [21] has been used to predict the stability of annular flow. Most of 
the calculations are for air-water mixtures in 2.5, 5 and 10 cm tubes, though a few calculations 
have been carried out for gas-oil systems as well, with the properties specified by Baker (1954). 
Some of the calculated results as well as a comparison with data available in the literature, are 
presented in the following. 

Figure 6 shows the input values of the void-fraction difference, al - a2, plotted against the 
annular void-fraction, al for 2.5 cm dia. tubes. Annular void-fractions were obtained by using 
the calculations specified in Appendix A, while the stratified void-fractions were obtained from 
[13a]-[13f], both at the same liquid and gas mass flow rates. The Froude number specified by 
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Figure 6. Void-fractions in annular and stratified flows. 
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[10] has been used as a parameter in the plot. It is seen that the stratified void-fraction is usually 
smaller than the annular void-fraction, the difference between the two increasing with increas- 
ing Froude numbers. In addition, for every Froude number, there exist some conditions where 
a2 is greater than m. These observations apply to tubes of other diameters as well. 

By using these void-fractions, predictions of stable annular flow regions have been made 
and the results are shown in figure 7. Here, the superficial liquid and gas Reynolds numbers 
have been plotted respectively as the abscissa and the ordinate, with FrWe 3/2 as a parameter. 
Regions of stable annular flow are seen to be dependent on tube diameter and are shown by 
shading the inside of the curves for 2.5, 5 and 10.1 cm tubes. In agreement with the observations 
of Scott (1963), the smaller diameter tubes tend to go into annular flow more easily than large 
diameter tubes. One expects intuitively that this trend is correct, since the potential energy 
change between stratified and annular flows is much less in a small tube than in a large tube. 

Figure 7 also depicts that there exists a certain Froude number below which no transition 
can occur. This value turns out to be approx. 0.75 for the three diameters considered. Since 

the Froude number as defined here involves only the average liquid velocity and the tube 
radius, it implies that in annular flow the average liquid kinetic energy should at least be equal 
to its potential energy at the tube center. This is an observation that is amenable to experimen- 
tal verification. 

Since energy exchange between the liquid and the gas is the postulated mechanism that 
causes annular flow, a large gas kinetic energy and a sufficiently large interfacial area are 
necessary for the transition. If, therefore, holding the gas velocity constant, the liquid mass flow 
rate and thus its superfacial velocity are reduced, the interfacial area of contact between the 
liquid and the gas gradually decreases in stratified flow. Thus, the chances of transition to 
annular flow are continuously reduced with decreasing liquid flow rates. This is what is implied 
by the Baker plot, figure 8, which shows larger and larger requirements of gas mass flux, Gt;, 
with decreasing values of G~JGs. In figure 7, this effect manifests itself as a limiting value of 
ReL for a g i~n  tube diameter, below which no annular flow can occur. 

Figure 8 is the Scott (1963) version of the Baker plot, on which the predictions of the 
present theory for 2.5, 5.1 and 10.2 cm tubes are shown for comparison. For the 10.2 cm tube, 
the predicted transition line agrees closely with that of the Baker maps, except near the slug 
flow boundary. The calculations for the smaller sized tubes indicate larger stable regions of 
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annular flow than the map. Moreover, this predicted diameter effect is in general agreement 
with the experimental data of Weisman et aL (1979). The limited calculations carried out for 
oil-air two-phase flow provide similar results, though they have not been shown on the map. 

The disagreement between the present theory and the map in the slug region arises partly 
due to the void-fractions used in the annular regime. As seen from the Appendix A, the 
void-fractions were calculated by using the Pai velocity in turbulent flow along with the Wallis 
equation (1970): 

H / =  151 - 15OVa [25] 

where, f~, is the actual interfacial friction factor, while f is the friction factor that would exist if 
the same two-phase flow existed with a smooth annular interface. This equation is valid only for 
large values of a. The values of f~ obtained for large liquid flow rates (small a) are inaccurate 
and thus, the predicted region of stability is not very accurate in the slug regime. Moreover, 
slug flow does not approximate stratified flow which has been used as the model in this theory. 
For both these reasons, some discrepancy between the theory and observations ought to be 
expected at the boundary of this regime. 

A comparison among some of the flow maps as well as the Taitel-Dukler and present 
theories as applicable to the annular transition region, is shown in figure 9. Here, the superficial 
velocities are the coordinates. The lack of agreement among the maps is evident. The Mandhane 
et al. (1974) region of stable annular flow is the line 1-1 and the Baker region is line 2-2. Line 
3-3 is the Taitel-Dukler (1975) theory while line 4-4 is the present prediction. For low liquid 
superficial velocities, both the Mandhane line and the Taitel-Dukler line indicate a region of 
stable annular flow, as long as the gas velocity is in excess of 70-80 ft/s (23-26 m/s). This result 
is in disagreement with the Baker plot and the results of Weisman et al. (1979). It also disagrees 
with the results of some simple experiments that the author has run. In addition, according to 
both the Baker plot and the present theory, higher and higher gas velocities are needed to 
achieve annular conditions as the liquid velocity is reduced. At high liquid velocities, the 
present theory seems to overpredict the region of stability, as already noted. If data regarding 
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void-fractions in annular flow at relatively high liquid fluxes become available, or if a better 
interfacial friction factor correlation is obtained, the results of the present prediction can be 
improved. 

In order to see how sensitive the predicted stability is to the input variables, two sets of 
"trial" calculations were attempted. In the first one, the values of m, $1, etc. were all chosen as 
the solutions to the annular flow problem with laminar liquid, laminar gas conditions, irrespec- 
tive of the Reynolds numbers. Similarly, the stratified flow void-fraction was obtained by using 
[13f], which is valid only in laminar flow. The stability criterion then predicts a totally stratified 
flow, independently of the Froude and Weber numbers. A second set of "trial" calculations 
involved changing the values of m, a2, etc. slightly from those used in the graph, figure 6. These 
indicate that annular flow stability usually improves with increasing values of a l -  a2, and 
diminishes with decreasing values when the other parameters are all fixed. Thus, the type of 
flow finally obtained in a given experiment for the same flow rates of liquid and gas, can depend 
strongly on the conditions at the test section inlet and exit. This may be the major reason for 
the large amount of disagreement among the several investigators exhibited in figure 9. In 
accordance with the recommendations of Hewitt (1976), the transition maps should, therefore, 
be used purely as guides and no reliance should be placed upon them to provide the exact 
regions of stability. 

Unfortunately, no simple method which can be used to extend the results to other gas-liquid 
combinations and diameters exists. Efforts are presently under way to calculate similar results 
for other cases as well. Curve fits that permit easy calculations to predict stability will then be 
obtained. 

It is to be noted here that the stability criterion developed is independent of the procedure 
used to calculate the annular and stratified void-fractions. The present author's procedures 
(Kadambi 1980, 1981) have been used to predict a~ and a2, simply because they have been 
found to be quite accurate in their agreement with data from several sources, expecially for 
air-water flows. There is no requirement or necessity to use these procedures to determine the 
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equilibrium void-fractions in annular and stratified flows. Other procedures that predict these 
void-fractions accurately can be used equally well. 

Since the stability criterion provided by [21] involves uj, the interfacial transition velocity 
whose value is not known accurately, some calculations have also been carried out to determine 
the sensitiveness of the results to changes in assumed values of u~. As long as ui is less than 
about 8% of ucm in magnitude, the predicted region of stability is almost independent of its 
magnitude. For all practical purposes, therefore, [22] is as good as [21] for transition cal- 
culations. 

All the present calculations consider annular flow as complete when a liquid film of zero 
thickness forms at the top of the tube, with an eccentricity as specified by [12]. Experimental 
observations are, however, subject to parallax errors and it is impossible to tell when the 
annular film has just formed completely. Usually, a liquid film of finite thickness exists at the 
tube top when one recognizes the flow as annular. This results in data that tend to under- 
estimate the range of stable annular flow, especially when transitions to the slug and bubble 
flow patterns are under investigation. Therefore, the present theory can be expected to 
overpredict the region of anr~ular flow in comparison with observations. In addition, since 
frictional and dissipative effects have been neglected, one expects a further slight overes- 
timation of the annular regime. If corrections are incorporated to obtain the proper value of Ap 
including dissipative effects in transition, one can expect better agreement between the 
predictions of the present model and observations. Considering the several simplifications used, 
the agreement between experimental observations (as specified by the flow maps) and the 
present theory may be considered as quite satisfactory, except near the annular-slug boundary. 

It must once again be emphasized that the present theory concerns itself only with the 
conditions required for the existence of stable flow regimes, without considering the details of 
the transition process. Therefore, it does not propose a mechanism for the transition or for the 
causes of the instability of a given flow pattern. In this respect, it is quite different from the 
Taitel-Dukier (1975) model, which proposes the Kelvin-Helmholtz stability criterion as the 
requirement for stratified flow. The present theory indicates strongly that a transition to annular 
flow occurs due to'an energy exchange between the liquid and the gas at the interface, without 
specifying the mechanism for the transfer. This postulate has been seen to be successful in 
predicting transition in several situations as already shown and thus provides a new insight to 
the problem as a whole. It also suggests strongly that entrainment and redeposition have no 
influence in the film formation, since the equations used here exhibit stability with no 
entrainment at all. This supports the contention of Butterworth (1971) that wave-spread or 
secondary flow maintains the annular film at the top of the tube against gravity. It is possible 
that both these mechanisms complement each other and are also aided by entrainment at a later 
stage. 

CONCLUSIONS 

1. Based on momentum balance and energy exchange considerations a criterion for the 
existence of stable annular flow has been established. This criterion predicts a line of transition 
between annular flow and the rest of the flow patterns which is different for different tube sizes. 
The smaller the tube size, the larger the range of stable annular flow. 

2. The predicted range of stability is in reasonable agreement with the Baker plot. At very 
low liquid flow rates, it predicts results which are in better agreement with experimental 
observations than the Mandhane plot. 

3. According to the present theory, stable annular flow can occur only when the liquid 
kinetic energy is equal to or larger than the liquid potential energy at the tube center. If it is 
smaller, the flow cannot be annular. 

4. Two-phase flow stability seems to be strongly affected by the specified conditions at the 
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entry to the test-section, even when the mass flow rates and fluid properties are fixed. This may 
explain the large degree of disagreement among the experimental data in specifying the ranges 

of stability of the various flow patterns. 
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A P P E N D I X  A 

D E T E R M I N A T I O N  OF A N N U L A R  F L O W  V O I D - F R A C T I O N S  

A very brief account of the method used to predict annular flow void-fractions is provided 
below. The details of the procedure used may be obtained from Kadambi (1980). 
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Considering an annular flow in a horizontal tube, the liquid velocity is calculated by using 
the Pai (1953) profile: 

S L - -  ~ 
[AI] 

Here, ~ = d R ,  is the non-dimensionalized radial coordinate, while sL and n are given by the 
equations: 

sL = 2.4172 x 10 12 (RED3.51 (2040 -< ReL -< 2800) 

= 0.585 + 0.0013172 (ReD °s" (ReL > 2800) 

n = - 0.617 + 0.008211 (ReD °'786, (n integer) 

Here, ReL is the Reynolds number that would exist for the liquid flowing through the pipe 
with the maximum velocity Urn. 

Similarly, we use for the gas velocity profile the equation: 

[ sa-m(il) 2 l-sa/il~ 2"] 
[A2] 

The values of sG and m are specified similar to those of sL and n. The quantity ui, is the 
interfacial velocity obtained by putting 77 = rli in [A1]. 

The interfacial shear is obtained by using the Wallis (1970) equation as specified by [25] of 
the main text. Entrainment has been taken into account by using Hutchinson & Whalley's 
(1973) correlation,t provided in the form of a graph. 

The velocity profiles have been integrated to determine the mass flow rates of the liquid and 
the gas, and thus the mixture quality. Wall shear and pressure drop have been determined from 
the equations of,notion, after the matching requirements at the interface are completed. 

Numerical calculations based on these equations provide results in very good agreement 
with several sources, in particular for air-water flows. 

tHutchinson, P. & P. B. Whalley 1973 A possible characterization of entrainment in annular flow. Chem. Engng. Sc~ 
Ill, 974-975. 


